CONNECTION STIFFNESS IMPLEMENTATION PROCEDURE FOR RAM USERS Version 15.09 and Older 10/05/18

STEP 1: SELECT THE SIDEPLATE CONNECTION TYPE (SEE FIG. 1)

- Open the Frame Design Module in RAM
- Criteria > SidePlate...
 - Select the SidePlate appropriate connection
 - 1. High Seismic for SMF, IMF, or OMF applications
 - 2. Wind/Low Seismic for R=3 applications

SidePlate							
Application Use Design Methodology for Buildings Controlled by:							
OK Cancel Help							

STEP 2: ASSIGN SIDEPLATE FRAME BEAM CONNECTION TYPE (SEE FIG. 3)

- Assign > Beam > Frame Beam Connection Types...
- Assign SidePlate to Both Ends, Left End, or Right End of lateral frame members
- Once the beam ends have been assigned, RAM Frame will display a red rectangle symbolizing a SidePlate® moment connection as shown in figure 2.

Figure 2 - SidePlate® frame

Assign Frame Beam Connection Type										
🔘 Standard	I									
O Springs										
Left:	Rotational Stiff	ness	Right: Rota			otational Stiffness				
	Major Axis				Major Axis					
	🖲 No Sprir	ng			No Spring					
	🔵 Use (kip	+in/rad):	0.00		🔵 Use (kip-in/rad):			0.00		
	🔵 % of Bea	0.0		🔵 % of Beam Stiffness:			0.0			
○ Custom										
			Stiffness M	Stiffness Multipliers						
Left:	None	Distance (in)	Area	ls.	ly	Torsion J	Shear A:	k Shear Ay		
	O Modify:	0.00	1.000	1.000	1.000	1.000	1.000	1.000		
Right:	None									
	O Modify:	0.00	1.000	1.000	1.000	1.000	1.000	1.000		
O Heduced Beam Section (HBS)										
Use Reduced Section Properties in Analysis RBS Properties >>										
Use Full Beam Section Properties in Analysis										
SidePlate Assign										
Both Ends Single Fence All										
O Left End										
O Right End Cancel Help Communities										

Figure 3 - assign frame beam connection type

Note: If you are NEW to RAM Structural Systems, or would like more detailed analysis and model validation tips, please refer to our document *How to model SidePlate in RAM* for more information.

